Multi-subregion based correlation filter bank for robust face recognition
نویسندگان
چکیده
In this paper, we propose an effective feature extraction algorithm, called Multi-Subregion based Correlation Filter Bank (MS-CFB), for robust face recognition. MS-CFB combines the benefits of global-based and local-based feature extraction algorithms, where multiple correlation filters corresponding to different face subregions are jointly designed to optimize the overall correlation outputs. Furthermore, we reduce the computational complexity of MS-CFB by designing the correlation filter bank in the spatial domain and improve its generalization capability by capitalizing on the unconstrained form during the filter bank design process. MS-CFB not only takes the differences among face subregions into account, but also effectively exploits the discriminative information in face subregions. Experimental results on various public face databases demonstrate that the proposed algorithm provides a better feature representation for classification and achieves higher recognition rates compared with several state-of-the-art algorithms.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملRobust multi-camera view face recognition
This paper presents multi-appearance fusion of Principal Component Analysis (PCA) and generalization of Linear Discriminant Analysis (LDA) for multi-camera view offline face recognition (verification) system. The generalization of LDA has been extended to establish correlations between the face classes in the transformed representation and this is called canonical covariate. The proposed system...
متن کاملImage Decomposition and Tracking with Gabor Wavelets
This paper explores the use of the Gabor wavelet representation of an image for robust object tracking in robot vision (object grasping, gesture recognition and face tracking in human-robot interaction). For image decomposition we developed a fast non-iterative transform algorithm, in which the original image is processed with a 2D Gabor wavelet filter bank. We used the positions of the local e...
متن کامل2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA
In this paper, we present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014